Anzeige
Skip to content
Read full article about: Arm Holdings gründet neue Geschäftseinheit für Robotik und Automotive

Arm Holdings hat sein Unternehmen neu strukturiert und eine Einheit namens "Physical AI" geschaffen, um stärker in den Robotik-Markt einzusteigen. Das britische Unternehmen, das Chip-Technologie für Smartphones und andere Geräte lizenziert, wird künftig drei Hauptgeschäftsbereiche betreiben: Cloud und AI, Edge (mobile Geräte und PCs) sowie Physical AI, das Automotive und Robotik vereint.

Drew Henry, Leiter der neuen Einheit, sagte Reuters, Physical AI könne "Arbeit grundlegend verbessern und Zeit freisetzen". Arm plant, Personal für Robotik aufzustocken. Die Zusammenlegung von Automotive und Robotik erfolgt laut Marketing-Chefin Ami Badani wegen ähnlicher Kundenanforderungen bei Stromverbrauch, Sicherheit und Zuverlässigkeit. Robotik dominierte die CES 2026 mit Dutzenden Ausstellern humanoider Roboter.

Read full article about: iRobot meldet Insolvenz an und geht an chinesischen Zulieferer

Der Saugroboter-Pionier iRobot hat Insolvenz angemeldet und plant, die Kontrolle an seinen chinesischen Hauptlieferanten Shenzhen PICEA Robotics zu übergeben. Laut Bloomberg werden die Aktien des Roomba-Herstellers im Rahmen des Insolvenzplans ihren Wert verlieren. Das Unternehmen wird von der Börse genommen, soll aber als operativer Geschäftsbetrieb erhalten bleiben.

Shenzhen PICEA hatte zuvor Schulden in Höhe von 191 Millionen Dollar von der Carlyle Group übernommen, um den Deal vorzubereiten. iRobot begründet den Schritt mit Umsatzrückgängen nach der Pandemie, Lieferkettenproblemen und günstigerer Konkurrenz. Eine geplante Übernahme durch Amazon scheiterte 2022 am Widerstand der EU-Behörden. In einer Stellungnahme versichert iRobot, dass Löhne und Lieferanten während des gerichtlichen Verfahrens weiter bezahlt werden. Das Unternehmen beziffert seine Vermögenswerte und Verbindlichkeiten auf 100 bis 500 Millionen Dollar.

Read full article about: Nvidia will das Datenproblem in der Robotik in ein Rechenproblem verwandeln

Nvidia setzt auf synthetische Daten, um die größte Hürde der Robotik zu überwinden: den Mangel an Trainingsdaten.

"Wir nennen das die große Datenlücke in der Robotik", erklärt ein Nvidia-Forscher beim Physical AI and Robotics Day auf der GTC Washington. Während große Sprachmodelle mit Billionen von Tokens aus dem Internet trainiert werden, stehen für Robotermodelle wie Nvidias GR00T bestenfalls ein paar Millionen Stunden aufwendig gesammelte Teleoperation-Daten zur Verfügung – und die meisten davon sind hochgradig aufgabenspezifisch.

Nvidias Lösung: Die Verhältnisse in der "Datenpyramide für Robotik" verschieben. An der Spitze stehen reale Daten – klein und teuer. In der Mitte synthetische Daten aus Simulation – theoretisch unbegrenzt. An der Basis: unstrukturierte Webdaten. "Wenn synthetische Daten die Web-Daten übertreffen, können Roboter wirklich generalisiert für jede Aufgabe lernen", so das Team. Mit Cosmos und Isaac Sim will Nvidia so ein Datenproblem in ein Compute-Problem verwandeln.

Read full article about: OpenAI baut wohl ein Robotik-Team für humanoide Systeme auf

OpenAI intensiviert seine Arbeit im Bereich Robotik und könnte gezielt Forscher für humanoide Systeme einstellen, wie Wired berichtet.

Laut Stellenausschreibungen stellt das Unternehmen ein Team zusammen, das Roboter per Teleoperation und Simulation trainiert. Zudem sucht OpenAI Ingenieure für Sensorik und Prototyping. In den Jobbeschreibungen heißt es, das Robotik-Team verfolge das Ziel, „Allzweck-Roboter“ zu entwickeln und damit Fortschritte in Richtung AGI zu erzielen.

Ob es sich dabei um humanoide Roboter handelt, ist bisher unklar, allerdings liegt dies nahe: Neueinstellungen wie der Stanford-Forscher Chengshu Li, der Benchmarks für humanoide Haushaltsroboter entwickelte, deuten auf eine Fokussierung auf humanoide Maschinen hin. OpenAI hatte 2020 die Robotik-Forschung eingestellt und dies mit einem Mangel an Trainingsdaten begründet. Im Januar tauchten dann erstmals wieder Stellenanzeigen des Unternehmens im Robotik-Bereich auf.