Anzeige
Skip to content
Read full article about: Der „Charakter“ von GPT-4o kommt nicht zurück, weil er zufällig entstanden ist

Ein als "Roon" auf X bekannter OpenAI-Entwickler erklärt, warum der "Charakter" eines LLMs nicht reproduzierbar ist. Laut Roon (via JB) kann sich die Persönlichkeit eines Modells bei jedem Trainingslauf verändern, auch wenn die Daten identisch bleiben. Grund dafür sind zufällige Faktoren im Trainingsprozess, etwa beim Reinforcement Learning (RL), die zu leicht abweichenden Ergebnissen führen. Diese Unterschiede entstehen durch zufällige Entscheidungen im sogenannten Modellraum.

OpenAI versuche laut Roon, diese sogenannten "Personality Drifts" möglichst gering zu halten, da Nutzer oft eine emotionale Bindung zu bestimmten Modellen entwickeln; so geschehen beim "Speichellecker"-Modell GPT-4o, das einige Menschen vermissen (Roon nicht; er wünschte dem Modell mangels Alignment „den Tod” und löschte den Tweet später). Dennoch sei es selbst innerhalb eines Trainingslaufs schwierig, exakt dieselbe Persönlichkeit wiederherzustellen.

Read full article about: Anthropic kommt nach Paris und München

Anthropic eröffnet neue Büros in Paris und München, um seine Präsenz in Europa auszubauen. Die Standorte ergänzen bestehende Niederlassungen in London, Dublin und Zürich. Laut Anthropic ist die EMEA-Region derzeit der am schnellsten wachsende Markt, mit einem mehr als verneunfachten Umsatz im letzten Jahr. Das Unternehmen baut für Europa ein eigenes Führungsteam auf, unter anderem mit Pip White für Nordeuropa und Thomas Remy für Südeuropa. Die neuen Büros sollen auch als regionale Zentren für Vertrieb, Partnerschaften und politische Zusammenarbeit dienen.

Mit Paris und München zählt Anthropic nun weltweit zwölf Standorte. Laut der Firma nutzen EU-Kunden wie BMW, SAP, Sanofi und Doctolib das KI-Modell Claude für Aufgaben wie Softwareentwicklung und Netzwerkmanagement. Begleitend kooperiert Anthropic mit Organisationen wie TUM.ai und Unaite.

Read full article about: Gemini-KI mit eigenen Daten: Google veröffentlicht "File Search Tool"

Google hat das File Search Tool in die Gemini-API integriert. Damit können Entwicklerinnen und Entwickler eigene Dateien über eine Vektordatenbank anbinden, um Gemini-Antworten auf konkrete Inhalte zu beziehen. Das Tool übernimmt dabei die Speicherung, Dateiaufteilung, Vektorsuche und das Einfügen der gefundenen Inhalte in eine Anfrage.

Die Nutzung ist kostenlos, abgerechnet wird nur die erste Indexierung der Daten (0,15 US-Dollar pro eine Million Tokens). Unterstützt werden Formate wie PDF, DOCX, TXT und JSON. Die Antworten enthalten automatisch Quellenverweise. Laut Google wird das Tool unter anderem für interne Suchsysteme und Chatbots eingesetzt. Dokumentation und eine Demoversion sind im Google-AI-Studio verfügbar.

Read full article about: Sechs KI-Pioniere sprechen über KI-Durchbrüche und überhöhte Erwartungen

KI-Elefantenrunde bei der Verleihung des Queen Elizabeth Prize 2025: Sechs führende Köpfe der KI-Forschung – Bill Dally, Yoshua Bengio, Fei-Fei Li, Yann LeCun, Jeff Hinton und Nvidia-CEO Jensen Huang – sprachen über persönliche Wendepunkte und die Entwicklung heutiger KI-Technologien.

Themen waren die Rolle von GPUs, große Sprachmodelle, selbstüberwachtes Lernen und der Einfluss von Bilddatensätzen wie ImageNet. Huang betonte, dass KI keine Blase sei, sondern eine neue Industrie mit wachsendem Bedarf an Rechenzentren. Li und LeCun warnten hingegen vor überzogenen Hoffnungen auf menschenähnliche Intelligenz. Die Runde war sich einig, dass KI langfristig viele Lebensbereiche prägen wird, es aber noch große wissenschaftliche Herausforderungen gibt.

Read full article about: Nvidia will das Datenproblem in der Robotik in ein Rechenproblem verwandeln

Nvidia setzt auf synthetische Daten, um die größte Hürde der Robotik zu überwinden: den Mangel an Trainingsdaten.

"Wir nennen das die große Datenlücke in der Robotik", erklärt ein Nvidia-Forscher beim Physical AI and Robotics Day auf der GTC Washington. Während große Sprachmodelle mit Billionen von Tokens aus dem Internet trainiert werden, stehen für Robotermodelle wie Nvidias GR00T bestenfalls ein paar Millionen Stunden aufwendig gesammelte Teleoperation-Daten zur Verfügung – und die meisten davon sind hochgradig aufgabenspezifisch.

Nvidias Lösung: Die Verhältnisse in der "Datenpyramide für Robotik" verschieben. An der Spitze stehen reale Daten – klein und teuer. In der Mitte synthetische Daten aus Simulation – theoretisch unbegrenzt. An der Basis: unstrukturierte Webdaten. "Wenn synthetische Daten die Web-Daten übertreffen, können Roboter wirklich generalisiert für jede Aufgabe lernen", so das Team. Mit Cosmos und Isaac Sim will Nvidia so ein Datenproblem in ein Compute-Problem verwandeln.

Read full article about: Meta startet KI-Video-Feed "Vibes" in Europa

Meta startet in Europa den KI-Video-Feed „Vibes“ in der Meta-AI-App. Alle Clips in Vibes sind KI-generiert – Nutzer können eigene Kurzvideos per Texteingabe erstellen oder bestehende Beiträge remixen, mit Musik unterlegen und stilistisch anpassen. Der Feed soll sich mit der Zeit den Interessen der Nutzer anpassen. Inhalte lassen sich direkt in der App teilen oder auf Instagram und Facebook weiterverbreiten.

Die Funktion wurde im September 2025 zunächst in den USA eingeführt. Neben Vibes bietet die App auch Zugriff auf den Meta-AI-Assistenten sowie Tools zur Bildbearbeitung und Verwaltung von Metas KI-Brillen. OpenAI hat dagegen mit der Sora-App seinen KI-Video-Feed ausgelagert. Sora ist aktuell noch nicht in der EU verfügbar.

Read full article about: Google bringt Gemini Deep Reseach für eigene Daten

Googles KI-Funktion Gemini Deep Research kann nun auch Inhalte aus Gmail, Drive und Chat in ihre Recherchen einbeziehen. Nutzer können auswählen, ob die KI neben der Websuche auch E-Mails, Dokumente oder Chatverläufe analysieren soll, um etwa Marktanalysen oder Wettbewerbsvergleiche zu erstellen. Die KI erstellt einen mehrstufigen Plan, durchsucht Quellen und erstellt auf Wunsch Berichte oder Podcasts. Das Angebot ist bisher nur auf dem Desktop verfügbar, soll aber auf Mobilgeräte ausgeweitet werden.

Deep Research ist eine agentische Funktion, und ist als solche anfällig für Cybersecurity-Attacken. Daher sollte man gerade im Kontext privater Daten sehr bewusst damit umgehen. Kürzlich zeigte ein Team, dass eine ähnliche Deep-Research-Funktion bei ChatGPT beim E-Mail-Zugriff dazu gebracht werden konnte, Daten zu leaken. Bei Googles Standard-Gemini-Assistent reichte schon ein manipulierter Kalendereintrag.

Read full article about: Snap integriert KI-Suche von Perplexity für 400 Millionen Dollar in Snapchat

Snap hat eine Partnerschaft im Wert von 400 Millionen US-Dollar mit Perplexity AI geschlossen, um dessen KI-Suchmaschine ab 2026 standardmäßig in Snapchat zu integrieren. Neben dem bestehenden Chatbot „My AI“ soll Perplexity Nutzern weltweit zur Verfügung stehen. Snap-CEO Evan Spiegel sieht in der Zusammenarbeit Chancen für weitere KI-Partner.

Die Vereinbarung umfasst eine Mischung aus Barzahlung und Unternehmensanteilen und wird ab 2026 als Umsatz verbucht. Perplexity zählt über 20 Millionen Nutzer, steht aber wegen angeblicher Verstöße gegen Nutzungsbedingungen u. a. von Amazon und Reddit vor Gericht.

Read full article about: KI-Rechenzentren könnten bald so viel Strom verbrauchen wie ein Drittel aller US-Haushalte

Laut Barclays sollen KI-Rechenzentren großer Tech-Konzerne wie OpenAI, Meta und Amazon bis zu 46 Gigawatt Leistung benötigen. Das sei genug Strom für rund 44 Millionen US-Haushalte - oder etwa ein Drittel aller US-Haushalte. Die Kosten für alle angekündigten Projekte belaufen sich demnach auf 2,5 Billionen Dollar.

Dieser Ausbau belastet die Stromnetze: Nvidia, Microsoft und OpenAI warnen bereits vor Instabilitäten durch schnelle Lastwechsel. Teilweise sollen Energieanlagen wie Solarkraftwerke und Gasspeicher direkt integriert werden. OpenAI hat die US-Regierung aufgefordert, jährlich 100 Gigawatt Strom neu bereitzustellen. Ob all diese Projekte tatsächlich umgesetzt werden, ist unklar. Barclays betont, dass die Abgrenzung zwischen realen und spekulativen Vorhaben schwierig bleibt.

Read full article about: Telekom-KI-Cloud steigert KI-Rechenleistung in Deutschland angeblich um 50 Prozent

Die Deutsche Telekom und Nvidia starten in München die Industrial AI Cloud, eine der größten KI-Infrastrukturen Europas. Dort werden mehr als 1.000 NVIDIA DGX B200-Systeme und RTX PRO Server mit bis zu 10.000 NVIDIA Blackwell-GPUs installiert. Das Volumen der Kooperation soll bei mehr als einer Milliarde Euro liegen.

Laut der Telekom steigt durch das neue Rechenzentrum die KI-Rechenleistung in Deutschland um 50 Prozent. Zum Vergleich: Sam Altman sagte kürzlich, dass OpenAI bis Ende 2025 "weit über eine Million GPUs" online haben wird. Und das ist nur OpenAI.

Ziel sei es, europäische Unternehmen bei der Entwicklung eigener KI-Anwendungen mit lokalen Daten zu unterstützen. SAP, Polarise und Agile Robots sind als Partner beteiligt. Die Plattform ermöglicht unter anderem die Simulation von Fabriken, das Training von Robotern oder das lokale Ausführen großer Sprachmodelle. Die Initiative ist privatwirtschaftlich, unabhängig von EU-Förderungen, und Teil der "Made 4 Germany"-Strategie.

"Deutschlands Stärke im Ingenieurwesen und in der Industrie ist legendär und wird jetzt durch KI noch weiter ausgebaut", sagt Nvidia-CEO Jensen Huang.