Inhalt
summary Zusammenfassung

Metas KI-Forschungsabteilung zeigt die Rekonstruktion getippter Sätze allein aus Gehirnaufnahmen und teilt neue Erkenntnisse, wie das Gehirn Gedanken in Sprache übersetzt.

Anzeige

Gemeinsam mit dem Basque Center on Cognition, Brain and Language in Spanien hat Metas Fundamental AI Research Lab (FAIR) zwei Studien veröffentlicht, die zeigen, wie KI das Verständnis der menschlichen Intelligenz voranbringen kann.

Sie bauen auf früheren Arbeiten aus 2022 und 2023 zur Entschlüsselung von wahrgenommenen Bildern und Sprache aus Gehirnsignalen auf, die ebenfalls der französische Neurowissenschaftler Jean-Rémi King angeführt hatte.

KI rekonstruiert 80 Prozent der getippten Sätze

In der ersten Studie zeichneten die Forschenden nun mittels MEG (Magnetoenzephalographie) und EEG (Elektroenzephalographie) die Gehirnaktivität von 35 Probanden auf, während diese Sätze tippten. Ein KI-Modell lernte dann, allein aus den Gehirnsignalen die getippten Sätze wiederzugeben.

Anzeige
Anzeige

Video: Meta

Damit gelang es, getippte Sätze aus nicht-invasiven Gehirnaufnahmen zu rekonstruieren, mit einer Genauigkeit von bis zu 80 Prozent auf Zeichenebene. Oft konnte so der vollständige Satz allein aus den Gehirnsignalen wiederhergestellt werden.

Allerdings sei die Dekodierungsleistung noch nicht perfekt. Zudem erfordere MEG, dass die Probanden sich in einem abgeschirmten Raum befinden und stillhalten. Künftige Studien müssen auch mit Patienten mit Hirnverletzungen durchgeführt werden, um klinische Anwendbarkeit zu zeigen.

Video: Meta

Meta verfolgt Gedanken bis zum fertigen Satz

Die zweite Studie untersuchte, wie das Gehirn Gedanken in komplexe Bewegungsabfolgen übersetzt. Bewegungen von Mund und Zunge erschweren dabei normalerweise die Messung der Gehirnsignale.

Empfehlung

Mithilfe von KI analysierten die Forscher:innen jetzt MEG-Aufnahmen, während Probanden wieder Sätze tippten. Mit 1.000 Aufnahmen pro Sekunde konnten sie möglichst genau bestimmen, wann Gedanken in Wörter, Silben und Buchstaben umgewandelt werden.

Meta fand heraus, dass das Gehirn dabei mit abstrakten Repräsentationen der Satzbedeutung beginnt und diese schrittweise in konkrete Fingerbewegungen übersetzt. Dabei werden aufeinanderfolgende Wörter und Aktionen kohärent und gleichzeitig repräsentiert, mithilfe eines speziellen "dynamischen neuronalen Codes".

Grafik: Hierarchische Darstellung der Sprachverarbeitung mit vier Ebenen (Phrase, Wort, Silbe, Buchstabe) und zeitlichem Verlauf der neuronalen Aktivierung.
Neurowissenschaftliche Untersuchungen zeigen die zeitliche Abfolge der Sprachverarbeitung im Gehirn. Von der Phrase bis zum einzelnen Buchstaben wird eine hierarchische Struktur aufgebaut, bevor der eigentliche Tippvorgang beginnt. | Bild: Meta

Entschlüsselung des neuronalen Codes bleibt KI-Herausforderung

Millionen von Menschen leiden jährlich unter kommunikationshemmenden Hirnläsionen. Neuroprothesen, die Signale an KI-Dekoder senden, könnten hier Abhilfe schaffen. Bisher waren nicht-invasive Ansätze jedoch durch verrauschte Signale limitiert.

Die Entschlüsselung dieses neuronalen Codes der Sprache bleibe eine Kernherausforderung der KI und Neurowissenschaften, so Meta. Das Verständnis der neuronalen Architektur und Berechnungsprinzipien der menschlichen Sprachfähigkeit ist ein wichtiger Schritt auf dem Weg zu fortschrittlicher KI.

Anzeige
Anzeige
Community beitreten
Kommt in die DECODER-Community bei Discord,Reddit, Twitter und Co. - wir freuen uns auf euch!

Metas Forschung kommt auch schon im Gesundheitswesen zum Einsatz: So nutzt das französische Unternehmen BrightHeart Metas Open-Source-Modell DINOv2, um angeborene Herzfehler in Ultraschallbildern zu erkennen. Auch das US-Unternehmen Virgo nutzt DINOv2, um Endoskopie-Videos zu analysieren.

Unterstütze unsere unabhängige, frei zugängliche Berichterstattung. Jeder Betrag hilft und sichert unsere Zukunft. Jetzt unterstützen:
Banküberweisung
Zusammenfassung
  • Meta und spanische Forscher rekonstruierten in einer Studie getippte Sätze allein aus nicht-invasiven Gehirnaufnahmen mittels MEG und EEG. Ein KI-Modell lernte, die Sätze mit einer Genauigkeit von bis zu 80 Prozent auf Zeichenebene zu rekonstruieren.
  • In einer zweiten Studie untersuchten die Forscher, wie das Gehirn Gedanken schrittweise in konkrete Fingerbewegungen übersetzt. Dabei werden Wörter und Aktionen kohärent und gleichzeitig mithilfe eines speziellen "dynamischen neuronalen Codes" repräsentiert.
  • Die Entschlüsselung dieses neuronalen Codes der Sprache bleibt eine Kernherausforderung für KI und Neurowissenschaften, etwa für Neuroprothesen, die Signale an KI-Dekoder senden.
Quellen
Jonathan ist Technikjournalist und beschäftigt sich stark mit Consumer Electronics. Er erklärt seinen Mitmenschen, wie KI bereits heute nutzbar ist und wie sie im Alltag unterstützen kann.
Community beitreten
Kommt in die DECODER-Community bei Discord,Reddit, Twitter und Co. - wir freuen uns auf euch!