Neue Google-Maps-KI verbessert Routenplanung um durchschnittlich bis zu 24 Prozent
Kurz & Knapp
- Google entwickelt einen KI-Algorithmus, der Routenvorschläge in Google Maps anhand von realen Fahrdaten und Faktoren wie Fahrzeit, Mautgebühren und Straßenzustand personalisiert.
- Der Ansatz verwendet "Inverse Reinforcement Learning" (IRL), um aus dem Nutzerverhalten zu lernen, und "Receding Horizon Inverse Planning" (RHIP), das unterschiedliche KI-Verfahren für den Nah- und Fernbereich verwendet.
- Tests zeigen, dass RHIP die Trefferquote bei Routenvorschlägen für Zweiräder um 16 bis 24 Prozent verbessert, indem es aus den Bewegungen der Maps-Nutzer lernt und bessere Vorhersagen für bevorzugte Routen macht.
Google-Entwickler:innen haben einen KI-Algorithmus entwickelt, der die Routenvorschläge in Google Maps genauer an die individuellen Präferenzen der Nutzer:innen anpassen soll.
Das 360 Millionen Parameter umfassende Modell analysiert laut Google anhand von realen Fahrdaten der Maps-Nutzer:innen, welche Faktoren diese bei ihren Routenentscheidungen berücksichtigen. In die KI-Berechnungen fließen beispielsweise Informationen wie Fahrzeit, Mautgebühren, Straßenzustand sowie persönliche Vorlieben ein. Die Technik basiert laut Google auf einem Ansatz namens "Inverse Reinforcement Learning" (IRL), bei dem das System aus dem Verhalten der Nutzer lernt.
"Receding Horizon Inverse Planning" für nah und fern
Möglich macht das eine IRL-Technik namens "Receding Horizon Inverse Planning" (RHIP), die Google in Zusammenarbeit mit seiner KI-Sparte DeepMind über mehrere Jahre entwickelt hat. RHIP nutzt verschiedene Verfahren: Im näheren Umfeld einer tatsächlich gefahrenen Route nutzt der Algorithmus rechenintensive stochastische Modelle, um auch unwahrscheinliche Optionen zu berücksichtigen. Für weiter entfernte Bereiche schaltet RHIP auf einfachere deterministische Methoden um, um Leistung zu sparen.

Laut Google kann RHIP damit in Tests die Trefferquote bei Routenvorschlägen für Fahrten und für Zweiräder im Durchschnitt um 16 bis 24 Prozent verbessern. Durch die Kombination der KI-Ansätze können die jeweiligen Stärken optimal kombiniert werden. Das System lernt aus den Bewegungen der Maps-Nutzer und soll mit der Zeit immer vorhersagen, welche Route sie bevorzugen.
In der Vergangenheit scheiterten laut Google Versuche, KI-Systeme im großen Stil für die Routenplanung einzusetzen, oft an der schieren Komplexität realer Straßennetze. Die Algorithmen konnten mit den unzähligen Möglichkeiten nicht umgehen. RHIP sei nun in der Lage, diese Hürde mit einem ausgeklügelten Ansatz zu überwinden.
Nach eigenen Angaben haben die Google-Entwickler mit RHIP die bisher größte Anwendung von "Inverse Reinforcement Learning" für die Routenplanung geschaffen und damit den Trend bestätigt, dass bessere Leistung mit Skalierung zusammenhängt, sowohl in Bezug auf den Datensatz als auch auf die Modellkomplexität.
Der Algorithmus wurde weltweit auf Google Maps Daten angewendet. Ausführliche Tests der Nutzer:innen müssen allerdings noch zeigen, ob sich die Technik in der Praxis bewährt und tatsächlich zu besseren Routen führt.
KI-News ohne Hype
Von Menschen kuratiert.
- Mehr als 20 Prozent Launch-Rabatt.
- Lesen ohne Ablenkung – keine Google-Werbebanner.
- Zugang zum Kommentarsystem und Austausch mit der Community.
- Wöchentlicher KI-Newsletter.
- 6× jährlich: „KI Radar“ – Deep-Dives zu den wichtigsten KI-Themen.
- Bis zu 25 % Rabatt auf KI Pro Online-Events.
- Zugang zum kompletten Archiv der letzten zehn Jahre.
- Die neuesten KI‑Infos von The Decoder – klar und auf den Punkt.